Pages
[Not a valid template]Categories
- Hyperstar III and SXVF-M26C
- Canon 200mm prime lens
- Astronomy Image of the Day
- Hyperstar III and Trius SX-814C
- Uncategorized
- Macrophotography
- Carbon Stars
- Picture of the Week
- High-Speed Photography
- Photomicroscopy
- Talks and Presentations
- Photographic courses
- Exhibitions
- CCD Images
- Published Work
- Site News
- Writing
- News
- Creating mosaics
- Star Vistas
- House and home
Visitors
Tags
The Golden Solid Angle – Yet Again!!!
Another hobby of mine is “experimental mathematics” – I think I may have mentioned (ages ago) my Prime number hunting server.
Well way back in June 2007 (just before actually) I discovered something that seems to have been overlooked for centuries – The Golden Solid Angle.
Everybody knows the basics, the 1-D Golden Ratio, the 2-D Golden Angle (equal to 2*Pi/Golden Ratio^2) and there it seems to have come to a halt for a few centuries. Why hasn’t anybody (until moi) taken this up one further dimension to form the Golden Solid Angle? Or have they? Nobody has got back to me on this and I’ve not seen it in any book or publication on the subject. So why not?
To find the Golden Solid Angle (in steradians) is pretty straightforward. Draw a sphere of radius r with the total surface area of the sphere being 1 + Golden Ratio. Then the solid angle subtended by the unity area part of the sphere is the Golden Solid Angle which is given by 4*Pi/Golden Ratio^2.
I have just sent this off to Wolfram Mathematica to see if they will publish it. Way back in 2007 I sent it off to the Mathematical Gazette and they answered – “Just because it is a new discovery in mathematics doesn’t make it necessarily publishable” which after a lifetime in science with over 120 refereed research journal publications to my name – was a new one on me.
Let’s see if the Stephen Wolfram outfit are a little more enlightened – or not!
Posted in Projects
Leave a comment
The Original Heart Nebula After Star Reduction
This is the original Parker/Carboni Heart nebula taken with a single Sky90 and M25C OSC CCD after star reduction has been applied.
Posted in Sky 90 and SXVF-M25C
Leave a comment
The Original M31 with Star Reduction
Well this is very interesting! Applying star reduction to the original Parker/Carboni M31 image, taken with a single Sky90 and M25C OSC CCD – brings out all the blue (hot young stars) which was not visible with all the stars there.
Posted in Sky 90 and SXVF-M25C
Leave a comment
Climate Change
Climate change? What climate change? Where’s your proof???
You aren’t going to believe this one.
So I suffer from Hayfever – big deal – why are you talking about Hayfever at the end of December??
I know Hayfever symptoms (I’ve had it for over 60 years) and I felt I had Hayfever at the BEGINNING of December. Surely not possible. However, talking to my wife, she said she had seen the Catkins out (Hazel and the first indicator that I’m going to get Hayfever) since the beginning of the month. I went out for a walk and sure enough all the Hazel trees down the lane were covered in Catkins!!!
10 years ago I got thoroughly pissed off when the Catkins came out at the beginning of February and kicked off my Hayfever.
5 years ago I got even more pissed off when the first Catkins opened up at the beginning of January.
And now in 2022 we have Catkins opening up at the beginning of December.
Congratulations you really have f***ed this Planet up good and proper.
Posted in Projects
Leave a comment
The Sadr Region in Cygnus
Nice clear night last night and I managed to grab 20 x 10-minute subs with the Canon 200mm prime lenses and the ASI 2600MC Pro CMOS cameras on the Sadr region. A bit perverse imaging Cygnus at the end of December maybe, but this isn’t the first time. I added last night’s data to 28 x 15-minute subs taken using the same kit on the same region, and the resulting composite is shown above. North is to the left in this image. Star reduction was also applied to the composite image.
Fibonacci – Primes
Here are the first 200 Fibonacci numbers – and the list below shows whether they are Prime (True) or not (False). Courtesy of Mathematica.
{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, \
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, \
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, \
14930352, 24157817, 39088169, 63245986, 102334155, 165580141, \
267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, \
4807526976, 7778742049, 12586269025, 20365011074, 32951280099, \
53316291173, 86267571272, 139583862445, 225851433717, 365435296162, \
591286729879, 956722026041, 1548008755920, 2504730781961, \
4052739537881, 6557470319842, 10610209857723, 17167680177565, \
27777890035288, 44945570212853, 72723460248141, 117669030460994, \
190392490709135, 308061521170129, 498454011879264, 806515533049393, \
1304969544928657, 2111485077978050, 3416454622906707, \
5527939700884757, 8944394323791464, 14472334024676221, \
23416728348467685, 37889062373143906, 61305790721611591, \
99194853094755497, 160500643816367088, 259695496911122585, \
420196140727489673, 679891637638612258, 1100087778366101931, \
1779979416004714189, 2880067194370816120, 4660046610375530309, \
7540113804746346429, 12200160415121876738, 19740274219868223167, \
31940434634990099905, 51680708854858323072, 83621143489848422977, \
135301852344706746049, 218922995834555169026, 354224848179261915075, \
573147844013817084101, 927372692193078999176, 1500520536206896083277, \
2427893228399975082453, 3928413764606871165730, \
6356306993006846248183, 10284720757613717413913, \
16641027750620563662096, 26925748508234281076009, \
43566776258854844738105, 70492524767089125814114, \
114059301025943970552219, 184551825793033096366333, \
298611126818977066918552, 483162952612010163284885, \
781774079430987230203437, 1264937032042997393488322, \
2046711111473984623691759, 3311648143516982017180081, \
5358359254990966640871840, 8670007398507948658051921, \
14028366653498915298923761, 22698374052006863956975682, \
36726740705505779255899443, 59425114757512643212875125, \
96151855463018422468774568, 155576970220531065681649693, \
251728825683549488150424261, 407305795904080553832073954, \
659034621587630041982498215, 1066340417491710595814572169, \
1725375039079340637797070384, 2791715456571051233611642553, \
4517090495650391871408712937, 7308805952221443105020355490, \
11825896447871834976429068427, 19134702400093278081449423917, \
30960598847965113057878492344, 50095301248058391139327916261, \
81055900096023504197206408605, 131151201344081895336534324866, \
212207101440105399533740733471, 343358302784187294870275058337, \
555565404224292694404015791808, 898923707008479989274290850145, \
1454489111232772683678306641953, 2353412818241252672952597492098, \
3807901929474025356630904134051, 6161314747715278029583501626149, \
9969216677189303386214405760200, 16130531424904581415797907386349, \
26099748102093884802012313146549, 42230279526998466217810220532898, \
68330027629092351019822533679447, 110560307156090817237632754212345, \
178890334785183168257455287891792, 289450641941273985495088042104137, \
468340976726457153752543329995929, 757791618667731139247631372100066, \
1226132595394188293000174702095995, \
1983924214061919432247806074196061, \
3210056809456107725247980776292056, \
5193981023518027157495786850488117, \
8404037832974134882743767626780173, \
13598018856492162040239554477268290, \
22002056689466296922983322104048463, \
35600075545958458963222876581316753, \
57602132235424755886206198685365216, \
93202207781383214849429075266681969, \
150804340016807970735635273952047185, \
244006547798191185585064349218729154, \
394810887814999156320699623170776339, \
638817435613190341905763972389505493, \
1033628323428189498226463595560281832, \
1672445759041379840132227567949787325, \
2706074082469569338358691163510069157, \
4378519841510949178490918731459856482, \
7084593923980518516849609894969925639, \
11463113765491467695340528626429782121, \
18547707689471986212190138521399707760, \
30010821454963453907530667147829489881, \
48558529144435440119720805669229197641, \
78569350599398894027251472817058687522, \
127127879743834334146972278486287885163, \
205697230343233228174223751303346572685, \
332825110087067562321196029789634457848, \
538522340430300790495419781092981030533, \
871347450517368352816615810882615488381, \
1409869790947669143312035591975596518914, \
2281217241465037496128651402858212007295, \
3691087032412706639440686994833808526209, \
5972304273877744135569338397692020533504, \
9663391306290450775010025392525829059713, \
15635695580168194910579363790217849593217, \
25299086886458645685589389182743678652930, \
40934782466626840596168752972961528246147, \
66233869353085486281758142155705206899077, \
107168651819712326877926895128666735145224, \
173402521172797813159685037284371942044301, \
280571172992510140037611932413038677189525}
{False, False, True, True, True, False, True, False, False, False, \
True, False, True, False, False, False, True, False, False, False, \
False, False, True, False, False, False, False, False, True, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, True, False, False, False, True, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, True, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
True, False, False, False, False, False, True, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False, \
False, False, False, False, False, False, False, False, False, False}
Posted in Projects
Leave a comment
Sunflower Seed-Head Again
Having spent the whole day on the Golden Ratio, the Fibonacci sequence, the Golden (Planar) Angle, and Phyllotaxis – here is a Mathematica produced piccie of the Sunflower seed-head pattern using 2,000 “seeds”.
Posted in Projects
Leave a comment
Yet Another Update on the Golden Ratio
The well-known Fibonacci sequence formed by summing consecutive terms looks like:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89……….
And a well known property of this sequence is that if you take the ratio of consecutive terms you get closer and closer to the Golden Ratio the higher up the sequence you go. So if we divide 89 by 55 we get 1.61818181…….
We can create a Fibonacci sequence incorporating the variable x in the following way:
1, x, (1+x), (1+2x), (2+3x), (3+5x), (5+8x), (8+13x)…
Now a remarkable property of this sequence is that once again, if we take the ratio of consective terms in the sequence, we get the Golden Ratio – Phi – provided x=Phi, which I think is a remarkable result.
What this means is that looking at the sequence with Phi replacing x we get:
1, Phi, (1 + Phi), (1 + 2*Phi), (2 + 3*Phi), (3 + 5*Phi)…
And if taking the ratio of consective terms gives us Phi, this means that:
(1 + Phi) = Phi^2
(1 + 2*Phi) = Phi^3
(2 + 3*Phi) = Phi^4
The first result comes directly from the basic definition of Phi itself, namely that (1 + Phi)/Phi = Phi
Taking a deeper look at the above sequence I was able to come up with a general result, namely:
Phi^n + 2*Phi^(n+1) = Phi^(n+3)
Posted in Projects
Leave a comment